Topological transitivity for cosine operator functions on groups
نویسندگان
چکیده
منابع مشابه
Topological Transitivity and Strong Transitivity
We discuss the relation between (topological) transitivity and strong transitivity of dynamical systems. We show that a transitive and open self-map of a compact metric space satisfying a certain expanding condition is strongly transitive. We also prove a couple of results for interval maps; for example it is shown that a transitive piecewise monotone interval map is strongly transitive.
متن کاملOn topological transitive maps on operator algebras
We consider the transitive linear maps on the operator algebra $B(X)$for a separable Banach space $X$. We show if a bounded linear map is norm transitive on $B(X)$,then it must be hypercyclic with strong operator topology. Also we provide a SOT-transitivelinear map without being hypercyclic in the strong operator topology.
متن کاملTopological transitivity
The concept of topological transitivity goes back to G. D. Birkhoff [1]
متن کاملA note on quasi irresolute topological groups
In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...
متن کاملOperator Growth Functions of Discrete Groups
A generalizationof the growth functions of nitelygeneratedgroups is introduced, namely the growth functionswith operatorcoeecients g2G gz jgj. The questions of rationality and convergence of such series are discussed. The operator growth functions of surface groups are explicitly computed. The operator geodesic growth functions are also studied.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2015
ISSN: 0166-8641
DOI: 10.1016/j.topol.2015.05.005